
In 2022 I was working as a senior pharmacometrician (primarily focused on clinical phase 1/2a PK/PD and scientific research) when I was contacted by a recruiter on LinkedIn to apply for an Associate Director Modelling & Simulation position in the ADME group of the early development (non-clinical) team of a clinical stage pharmaceutical company. The hiring process consisted of a number of interviews and a case study.
As I did not find any real world examples of case studies in the pharmacometrics world online, I wanted to share the contents of my case study here so you can see what was requested and you might want to give it a try yourself to see where you struggle and be better prepared for your own interview!
The following data of the case study was given 7 days in advance of the presentation date. The request was a 45 minute presentation with a 15 minute discussion to the full early development team consisting of ADME, toxicology, and pharmacology experts (no pharmacometricians).
Note: the case study is all based on hypothetical simulated data of a hypothetical compound called D071. Data was changed and questions were slightly altered for this blog post.
Part 1: preclinical PK modeling and human PK predictions
Based on IV and PO data in preclinical species:
- Generate NCA and compartmental PK models for all preclinical species
- Predict oral PK profiles at higher dose levels (30-100-300 mg/kg in rats, 30-100 mg/kg in monkey)
- Predict 2h-IV infusion profiles at 1, 3, 10 mg/h/kg in the preclinical species
- Explain the underlying assumptions used for modeling
- List which experimental data would be necessary to verify / refine those assumptions
Based on in vitro potency on the pharmacological target, and assuming a 2h target coverage:
- Predict efficacious doses (PO/infusion) in preclinical species based on IC90 assuming a vascular target
- Predict efficacious doses (PO/infusion) in preclinical species based on IC90 assuming a target in brain
- Predict human oral and 2h-infusion PK profiles reaching efficacious concentrations as above (loading doses may be applied in the clinic if needed)
- Explain the underlying assumptions used for those predictions
- List which experimental data would be necessary to verify / refine those assumptions
Part 2: PK/PD modeling
Based on PK and efficacy data in monkeys:
- Generate the PK/PD relationship and propose PK/PD target exposures required for efficacy
- Predict human PK/PD
- Predict human efficacious doses via oral and for a 2h IV infusion
Good luck!
Available datasets
Molecular weight of D071
The molecular weight of compound D071 is 438 g/mol.
Male and female rat PK IV bolus / PO, including renal excretion
Male rats
| Day 1: D071 @ 1 mg/kg iv (ng/ml plasma) | ||||||
| Time (h) | MR1 | MR2 | MR3 | Mean | SD | CV% |
| 0 | 0 | 0 | 0 | 0,0 | 0,0 | – |
| 0,25 | 4290 | 2340 | 2650 | 3093,3 | 1047,9 | 33,9 |
| 0,5 | 2140 | 885 | 1500 | 1508,3 | 627,5 | 41,6 |
| 1 | 1180 | 260 | 659 | 699,7 | 461,3 | 65,9 |
| 2 | 567 | 30,1 | 120 | 239,0 | 287,6 | 120,3 |
| 3 | 378 | 27,1 | 77,9 | 161,0 | 189,6 | 117,8 |
| 4 | 311 | 31 | 48 | 130,0 | 157,0 | 120,8 |
| 6 | 181 | 15,4 | 43,2 | 79,9 | 88,7 | 111,0 |
| 8 | 99,6 | 14,6 | 33,5 | 49,2 | 45 | 90,7 |
| 10 | 74,6 | 7,89 | 27,5 | 36,7 | 34 | 93,5 |
| 12 | 51,8 | 5,71 | 21,5 | 26,3 | 23 | 88,9 |
| 18 | 12,5 | 1,98 | 8,85 | 7,8 | 5 | 68,7 |
| 24 | 2,17 | 0,546 | 4,71 | 2,5 | 2,1 | 84,8 |
| Day 1: D071 @ 1 mg/kg iv | ||||||
| MR1 | MR2 | MR3 | Mean | SD | CV% | |
| Amount excreted in urine in 12h (%) | 40,2 | 38,1 | 32,6 | 37,0 | 3,9 | 10,6 |
| BW (kg) | 0,31 | 0,28 | 0,27 | |||
| Day 7: D071 @ 1 mg/kg po (ng/ml plasma) | ||||||
| Time (h) | MR1 | MR2 | MR3 | Mean | SD | CV% |
| 0 | 0 | 0 | 0 | 0,0 | 0,0 | – |
| 0,25 | 116 | 113 | 107 | 112,0 | 4,6 | 4,1 |
| 0,5 | 145 | 167 | 140 | 150,7 | 14,4 | 9,5 |
| 1 | 336 | 138 | 179 | 217,7 | 104,5 | 48,0 |
| 2 | 375 | 96,1 | 201 | 224,0 | 140,9 | 62,9 |
| 3 | 398 | 74,5 | 143 | 205,2 | 170,5 | 83,1 |
| 4 | 363 | 70,4 | 153 | 195,5 | 150,9 | 77,2 |
| 6 | 272 | 30,7 | 101 | 134,6 | 124,1 | 92,2 |
| 8 | 282 | 26 | 64,8 | 124,3 | 138 | 111,0 |
| 10 | 190 | 13,6 | 44,9 | 82,8 | 94 | 113,6 |
| 12 | 131 | 8,1 | 31,1 | 56,7 | 65 | 115,2 |
| 18 | 38,9 | 1,82 | 15,6 | 18,8 | 19 | 99,8 |
| 24 | 15 | 0,501 | 4,69 | 6,7 | 7,5 | 110,9 |
| Day 14: D071 @ 10 mg/kg po (ng/ml plasma) | ||||||
| Time (h) | MR1 | MR2 | MR3 | Mean | SD | CV% |
| 0 | 0 | 0 | 0 | 0,0 | 0,0 | – |
| 0,25 | 1270 | 1040 | 1100 | 1136,7 | 119,3 | 10,5 |
| 0,5 | 2080 | 1440 | 1740 | 1753,3 | 320,2 | 18,3 |
| 1 | 2860 | 1580 | 2240 | 2226,7 | 640,1 | 28,7 |
| 2 | 2980 | 1340 | 2110 | 2143,3 | 820,5 | 38,3 |
| 3 | 2580 | 1080 | 1690 | 1783,3 | 754,3 | 42,3 |
| 4 | 2130 | 881 | 1320 | 1443,7 | 633,6 | 43,9 |
| 6 | 1400 | 582 | 816 | 932,7 | 421,3 | 45,2 |
| 8 | 914 | 386 | 518 | 606,0 | 275 | 45,3 |
| 10 | 591 | 257 | 341 | 396,3 | 174 | 43,8 |
| 12 | 381 | 172 | 232 | 261,7 | 108 | 41,1 |
| 18 | 100 | 52,3 | 86,8 | 79,7 | 25 | 30,9 |
| 24 | 26,1 | 16,3 | 38,3 | 26,9 | 11,0 | 41,0 |
Female rats
| Day 1: D071 @ 1 mg/kg iv (ng/ml plasma) | ||||||
| Time (h) | FR1 | FR2 | FR3 | Mean | SD | CV% |
| 0 | 0 | 0 | 0 | 0,0 | 0,0 | – |
| 0,25 | 1740 | 605 | 242 | 862,3 | 781,5 | 90,6 |
| 0,5 | 623 | 86,8 | 29,8 | 246,5 | 327,3 | 132,7 |
| 1 | 127 | 8,63 | 20,3 | 52,0 | 65,2 | 125,5 |
| 2 | 46,6 | 8,68 | 16,2 | 23,8 | 20,1 | 84,3 |
| 3 | 41,6 | 4,65 | 9,7 | 18,7 | 20,0 | 107,4 |
| 4 | 31,7 | 4,29 | 8,02 | 14,7 | 14,9 | 101,3 |
| 6 | 22 | 2,44 | 3,75 | 9,4 | 10,9 | 116,4 |
| 8 | 16,4 | 1,57 | 1,42 | 6,5 | 9 | 133,1 |
| 10 | 6,87 | 0,91 | 0,923 | 2,9 | 3 | 118,5 |
| 12 | 7,41 | 0,448 | 0,531 | 2,8 | 4 | 142,9 |
| 18 | 2,08 | 0,157 | LLOQ | |||
| 24 | 0,916 | LLOQ | LLOQ | |||
| Day 1: D071 @ 1 mg/kg iv | ||||||
| FR1 | FR2 | FR3 | Mean | SD | CV% | |
| Amount excreted in urine in 12h (%) | 16,1 | 20,0 | 18,0 | 18,0 | 2,0 | 10,8 |
| BW (kg) | 0,25 | 0,23 | 0,19 | |||
| Day 7: D071 @ 1 mg/kg po (ng/ml plasma) | ||||||
| Time (h) | FR1 | FR2 | FR3 | Mean | SD | CV% |
| 0 | 0 | 0 | 0 | 0,0 | 0,0 | – |
| 0,25 | 84 | 37,9 | 234 | 118,6 | 102,5 | 86,4 |
| 0,5 | 135 | 31,8 | 209 | 125,3 | 89,0 | 71,0 |
| 1 | 125 | 30,9 | 97,1 | 84,3 | 48,3 | 57,3 |
| 2 | 132 | 15,5 | 38,1 | 61,9 | 61,8 | 99,9 |
| 3 | 127 | 18,3 | 12,2 | 52,5 | 64,6 | 123,0 |
| 4 | 86,7 | 14,9 | 5,48 | 35,7 | 44,4 | 124,5 |
| 6 | 64,5 | 8,08 | 2,2 | 24,9 | 34,4 | 138,0 |
| 8 | 40,8 | 3,82 | 0,914 | 15,2 | 22 | 146,5 |
| 10 | 34,7 | 3,08 | 0,472 | 12,8 | 19 | 149,4 |
| 12 | 24,3 | 1,11 | 0,214 | 8,5 | 14 | 159,9 |
| 18 | 5,86 | 0,249 | LLOQ | |||
| 24 | 2,62 | LLOQ | LLOQ | |||
| Day 14: D071 @ 10 mg/kg po (ng/ml plasma) | ||||||
| Time (h) | FR1 | FR2 | FR3 | Mean | SD | CV% |
| 0 | 0 | 0 | 0 | 0,0 | 0,0 | – |
| 0,25 | 895 | 474 | 1920 | 1096,3 | 743,7 | 67,8 |
| 0,5 | 1130 | 496 | 1520 | 1048,7 | 516,8 | 49,3 |
| 1 | 1140 | 428 | 924 | 830,7 | 365,1 | 43,9 |
| 2 | 968 | 308 | 355 | 543,7 | 368,2 | 67,7 |
| 3 | 813 | 222 | 149 | 394,7 | 364,1 | 92,3 |
| 4 | 682 | 160 | 70,6 | 304,2 | 330,2 | 108,6 |
| 6 | 479 | 83,8 | 23,1 | 195,3 | 247,6 | 126,8 |
| 8 | 335 | 44,2 | 10,2 | 129,8 | 179 | 137,5 |
| 10 | 234 | 23,5 | 5,01 | 87,5 | 127 | 145,4 |
| 12 | 163 | 12,6 | 2,52 | 59,4 | 90 | 151,4 |
| 18 | 54,7 | 2,06 | 0,329 | 19,0 | 31 | 162,4 |
| 24 | 18,1 | 0,362 | LLOQ | |||
Male monkey PK IV bolus / PO
| Day 1: D071 @ 1 mg/kg iv (ng/ml plasma) | ||||||
| Time (h) | M1 | M2 | M3 | Mean | SD | CV% |
| 0 | 0 | 0 | 0 | 0,0 | 0,0 | – |
| 0,25 | 3410 | 2940 | 2910 | 3086,7 | 280,4 | 9,1 |
| 0,5 | 2100 | 2000 | 2430 | 2176,7 | 225,0 | 10,3 |
| 1 | 746 | 1300 | 756 | 934,0 | 317,0 | 33,9 |
| 2 | 172 | 541 | 137 | 283,3 | 223,8 | 79,0 |
| 3 | 94,8 | 325 | 46,4 | 155,4 | 148,9 | 95,8 |
| 4 | 86,1 | 160 | 39,9 | 95,3 | 60,6 | 63,5 |
| 6 | 55,3 | 88 | 38,7 | 60,7 | 25,1 | 41,3 |
| 8 | 48,3 | 85,1 | 27,6 | 53,7 | 29 | 54,3 |
| 10 | 31,5 | 58,3 | 23,2 | 37,7 | 18 | 48,7 |
| 12 | 20,6 | 47 | 22,6 | 30,1 | 15 | 48,9 |
| 18 | 4,33 | 20,8 | 9,68 | 11,6 | 8 | 72,4 |
| 24 | 3,04 | 11,5 | 7,97 | 7,5 | 4,2 | 56,6 |
| Day 1: D071 @ 1 mg/kg iv | ||||||
| M1 | M2 | M3 | Mean | SD | CV% | |
| Amount excreted in urine in 12h (%) | 60,3 | 65,8 | 52,1 | 59,4 | 6,9 | 11,6 |
| BW (kg) | 4,2 | 4,3 | 3,8 | |||
| Day 7: D071 @ 1 mg/kg po (ng/ml plasma) | ||||||
| Time (h) | M1 | M2 | M3 | Mean | SD | CV% |
| 0 | 0 | 0 | 0 | 0,0 | 0,0 | – |
| 0,25 | 275 | 69,2 | 416 | 253,4 | 174,4 | 68,8 |
| 0,5 | 324 | 102 | 499 | 308,3 | 199,0 | 64,5 |
| 1 | 422 | 170 | 787 | 459,7 | 310,2 | 67,5 |
| 2 | 296 | 176 | 478 | 316,7 | 152,1 | 48,0 |
| 3 | 334 | 119 | 495 | 316,0 | 188,6 | 59,7 |
| 4 | 213 | 106 | 268 | 195,7 | 82,4 | 42,1 |
| 6 | 183 | 74,9 | 190 | 149,3 | 64,5 | 43,2 |
| 8 | 134 | 44,6 | 89,8 | 89,5 | 45 | 50,0 |
| 10 | 55,3 | 42 | 61,1 | 52,8 | 10 | 18,5 |
| 12 | 52 | 26,4 | 30,3 | 36,2 | 14 | 38,1 |
| 18 | 13,1 | 10,2 | 15,3 | 12,9 | 3 | 19,9 |
| 24 | 5,28 | 3,95 | 9,11 | 6,1 | 2,7 | 43,8 |
| Day 14: D071 @ 10 mg/kg po (ng/ml plasma) | ||||||
| Time (h) | M1 | M2 | M3 | Mean | SD | CV% |
| 0 | 0 | 0 | 0 | 0,0 | 0,0 | – |
| 0,25 | 2680 | 1250 | 3700 | 2543,3 | 1230,7 | 48,4 |
| 0,5 | 4140 | 2140 | 5500 | 3926,7 | 1690,1 | 43,0 |
| 1 | 5200 | 3150 | 6440 | 4930,0 | 1661,5 | 33,7 |
| 2 | 4890 | 3550 | 5330 | 4590,0 | 927,1 | 20,2 |
| 3 | 4070 | 3140 | 3960 | 3723,3 | 508,2 | 13,6 |
| 4 | 3340 | 2570 | 2930 | 2946,7 | 385,3 | 13,1 |
| 6 | 2240 | 1630 | 1640 | 1836,7 | 349,3 | 19,0 |
| 8 | 1520 | 1050 | 971 | 1180,3 | 297 | 25,1 |
| 10 | 1030 | 699 | 613 | 780,7 | 220 | 28,2 |
| 12 | 704 | 486 | 413 | 534,3 | 151 | 28,3 |
| 18 | 231 | 199 | 175 | 201,7 | 28 | 13,9 |
| 24 | 77,7 | 94,9 | 94,6 | 89,1 | 9,8 | 11,1 |
Brain:plasma ratio was estimated in monkeys, and was 0.5. The B:P ratio was not variable over time.
PPB in rat, monkey, human
The plasma protein binding (reported as fraction unbound, fu) in plasma is given for the RED and the cross-filtration assays.
| fu,plasma (RED) | |||
| Species | Male/Female | Concentration (µM) | fu |
| Rat | M | 0,1 | 0,1 |
| Rat | M | 1 | 0,12 |
| Rat | M | 10 | 0,14 |
| Rat | F | 0,1 | 0,07 |
| Rat | F | 1 | 0,8 |
| Rat | F | 10 | 0,13 |
| Monkey | M | 1 | 0,08 |
| Monkey | F | 1 | 0,08 |
| Human | M+F | 0,1 | 0,05 |
| Human | M+F | 1 | 0,06 |
| Human | M+F | 10 | 0,07 |
| fu,plasma (cross-filtration) | |||
| Species | Male/Female | Concentration (µM) | fu |
| Rat | M | 1 | 0,02 |
| Rat | F | 1 | 0,01 |
| Monkey | M | 1 | 0,02 |
| Human | M+F | 1 | 0,01 |
IC50 on pharmacological target in rat, monkey, human
The IC50 in each of the investigated species are reported. No other information is available at this stage.
| Potency on receptor X | |
| Species | IC50 (nM) |
| Rat | 18 |
| Monkey | 80 |
| Human | 12 |
Efficacy study in monkey PO
Identical monkeys on a different study day as when PK was sampled.
| D071 @ 1 mg/kg PO in monkeys (% change from baseline) | ||||||
| Time (h) | M1 | M2 | M3 | Mean | SD | CV% |
| 0 | 0 | 0 | 0 | 0,0 | 0,0 | – |
| 2 | 22,7 | 10,4 | 30,8 | 21,3 | 10,3 | 48,2 |
| 3 | 19,5 | 9,22 | 24,9 | 17,9 | 8,0 | 44,6 |
| 4 | 16,6 | 7,75 | 19,7 | 14,7 | 6,2 | 42,2 |
| 6 | 11,8 | 5,24 | 12,1 | 9,7 | 3,9 | 39,9 |
| 8 | 8,22 | 3,52 | 7,54 | 6,4 | 2,5 | 39,5 |
| 12 | 3,84 | 1,66 | 3,39 | 3,0 | 1,2 | 38,8 |
| D071 @ 10 mg/kg PO in monkeys (% change from baseline) | ||||||
| Time (h) | M1 | M2 | M3 | Mean | SD | CV% |
| 0 | 0 | 0 | 0 | 0,0 | 0,0 | – |
| 2 | 70,7 | 66,5 | 71,7 | 69,6 | 2,8 | 4,0 |
| 3 | 68,4 | 64,6 | 68 | 67,0 | 2,1 | 3,1 |
| 4 | 65,6 | 61,4 | 63,5 | 63,5 | 2,1 | 3,3 |
| 6 | 59 | 52,9 | 53 | 55,0 | 3,5 | 6,4 |
| 8 | 51,4 | 43,7 | 42,1 | 45,7 | 5,0 | 10,9 |
| 12 | 35,3 | 28 | 25 | 29,4 | 5,3 | 18,0 |
Note 1: No software environment for modelling or data analysis is provided. Open source software should preferably be used.
Note 2: As it is a case study for learning purposes, no ‘answers’ will be provided.
My personal opinion is that this case study was quite a bit of work to be done in a less than 7-day time period outside of my normal job without a modelling platform, and therefore some corners had to be cut in the analysis. This was also a good learning opportunity for me to try and reduce this work into smaller sections and highlight the key answers and limitations while still being able to show what I can do and how I would handle these questions, even if someone else would have a different approach. If you have looked at my other posts, you would not be surprised that I also created a Shiny application to show additional dosing scenarios during my presentation to the team.
p.s. I got the job in the end.
What are your thoughts on this case study? Did you have a similar case study story you would like to share? Feel free to leave a comment!
Any suggestions or typo’s? Leave a comment or contact me at info@pmxsolutions.com!




Thank you for this post! It will be very handy in the hands of newcomers to the pharmacometrics field. There is indeed very little information to help pharmacometricians prepare for interviews. Here are some questions I have gotten myself during interviews:
What is the role of pharmacometrics in drug development?
What is your typical model building process?
How do you limit bioavailability to the range 0-1?
Are you familiar with R, Shiny, Markdown?
What do you think is the new trend in pharmacometrics?